RD SHARMA
Solutions
Class 6 Maths
Chapter 20
Ex 20.5

Mark the correct alternative in each of the following:

1. The sides of a rectangle are in the ratio 5: 4. If its perimeter is 72 cm, then its length is

(a) 40 cm (b) 20 cm (c) 30 cm (d) 60 cm

Answer: (b) 20 cm

Explanation:

Let the sides of the rectangle be 5x and 4x. (Since, they are in the ratio 5:4)

Now, perimeter of rectangle = 2 (Length + Breadth)

72 = 2(5x + 4x)

 $72 = 2 \times 9x$

72 = 18x

x = 4

Thus, the length of the rectangle = $5x = 5 \times 4 = 20$ cm

2. The cost of fencing a rectangular field 34 m long and 18 m wide at As 2.25 per metre is

(a) Rs 243 (b) Rs 234 (c) Rs 240 (d) Rs 334

Answer: (b) Rs. 234

Explanation:

For fencing the rectangular field, we need to find the perimeter of the rectangle.

Length of the rectangle = 34 m

Breadth of the rectangle = 18 m

Perimeter of the rectangle = 2 (Length + Breadth) = 2 (34 + 18) m = 2×52 m = 104 m

Cost of fencing the field at the rate of Rs. 2.25 per meter = Rs. 104×2.25 = Rs. 234

3. If the cost of fencing a rectangular field at Rs. 7.50 per metre is Rs. 600, and the length of the field is 24 m, then the breadth of the field is

(a) 8 m (b) 18 m (c) 24 m (d) 16 m

Answer: (d) 16 m

Explanation:

Cost of fencing the rectangular field = Rs. 600

Rate of fencing the field = Rs. 7.50 per m

Therefore, perimeter of the field = Cost of fencing / Rate of fencing = 600 / 7.50 = 80 m

Now, length of the field = 24 m

Therefore, breadth of the field = Perimeter / 2 – Length = 80 / 2- 24 = 16 m

4. The cost of putting a fence around a square field at As 2.50 per metre is As 200. The length of each side of the field is

(a) 80 m (b) 40 m (c) 20 m (d) None of these

Answer: (c) 20 m

Explanation:

Cost of fencing the square field = Rs. 200

Rate of fencing the field = Rs. 2.50

Now, perimeter of the square field = Cost of fencing / Rate of fencing = 200 / 2.50 = 80 m

Perimeter of square = $4 \times \text{Side}$ of the square

Therefore, side of the square = Perimeter / 4 = 80 / 4 = 20 m

5. The length of a rectangle is three times of its width. If the length of the diagonal! is $8\sqrt{10}$ m, then the perimeter of the rectangle is

(a) $15\sqrt{10}$ m (b) $16\sqrt{10}$ m (c) $24\sqrt{10}$ m (d) 64 m

Answer: (d) 64 m

Explanation:

Let us consider a rectangle ABCD.

Also, let us assume that the width of the rectangle, i.e., BC be x m.

It is given that the length is three times width of the rectangle.

Therefore, length of the rectangle, i.e., AB = 3x m

Now, AC is the diagonal of rectangle.

In right angled triangle ABC.

$$AC^2 = AB^2 + BC^2$$

$$(8\sqrt{10})^2 = (3x)^2 + x^2$$

$$640 = 9x^2 + x^2$$

$$640 = 10x^2$$

$$x^2 = 640 / 10 = 64$$

$$x = 64 = 8 \text{ m}$$

Thus, breadth of the rectangle = x = 8 m

Similarly, length of the rectangle = $3x = 3 \times 8 = 24 \text{ m}$

Perimeter of the rectangle = 2 (Length + Breadth)

$$= 2(24 + 8)$$

$$= 2 \times 32 = 64 \text{ m}$$

6. If a diagonal of a rectangle is thrice its smaller side, then its length and breadth are in the ratio

(a)
$$3:1$$
 (b) $\sqrt{3}:1$ (c) $\sqrt{2}:1$ (d) $2\sqrt{2}:1$

Answer: (d) 22 : 1

Explanation:

Let us assume that the length of the smaller side of the rectangle, i.e., BC be x and length of the larger side , i.e., AB be y.

It is given that the length of the diagonal is three times that of the smaller side.

Therefore, diagonal = 3x = AC

Now, applying Pythagoras theorem, we get:

 $(Diagonal)^2 = (Smaller side)^2 + (Larger side)^2$

$$(AC)^2 = (AB)^2 + (BC)^2$$

$$(3x)^2 = (x)^2 + (y)^2$$

$$9x^2 = x^2 + y^2$$

$$8x^2 = y^2$$

Now, taking square roots of both sides, we get:

$$22 x = y$$

or,
$$y / x = 22 / 1$$

Thus, the ratio of the larger side to the smaller side = 22:1

7. The ratio of the areas of two squares, one having its diagonal double than the other, is

(a) 1:2 (b) 2:3 (c) 3:1 (d) 4:1

Answer: (d) 4:1

Explanation:

Let the two squares be ABCD and PQRS. Further, the diagonal of square PQRS is twice the diagonal of square ABCD

PR = 2 AC

Now, area of the square =
$$\frac{\text{(diagonal)}^2}{2}$$

Area of PQRS =
$$\frac{(PR)^2}{2}$$

Similarly, area of ABCD =
$$\frac{(AC)^2}{2}$$

According to the question:

If AC = x units, then, PR = 2x units

Therefore, Area of PQRS / Area of ABCD =
$$\frac{\frac{(PR)^2}{2}}{\frac{(AC)^2}{2}} = \frac{(PR)^2}{(AC)^2} = \frac{(2x)^2}{(1x)^2} = \frac{4}{1} = 4:1$$

Thus, the ratio of the areas of squares PQRS and ABCD = 4:1

8. If the ratio of areas of two squares is 225: 256, then the ratio of their perimeters is

Answer: (c) 15:16

Explanation:

Let the two squares be ABCD and PQRS.

Further, let the lengths of each side of ABCD and PQRS be x and y, respectively.

Therefore Area of sq. ABCD / Area of sq. PQRS = x^2 / y^2

$$=> x^2 / y^2 = 225 / 256$$

Taking square roots on both sides, we get:

$$x / y = 15 / 16$$

Now, the ratio of their perimeters:

Perimeter of sq. ABCD / Perimeter of sq. PQRS

=
$$4 \times \text{side of sq. ABCD} / 4 \times \text{Side of sq. PQRS} = 4x / 4y$$

Perimeter of sq. ABCD / Perimeter of sq. PQRS = x y

Perimeter of sq. ABCD / Perimeter of sq. PQRS = 15 / 16

Thus, the ratio of their perimeters = 15:16

9. If the sides of a square are halved, then its area

(a) remains same (b) becomes half (c) becomes one fourth

(d) becomes double

Answer: (c) becomes one fourth

Explanation:

Let the side of the square be x.

Then, area = (Side x Side) =
$$(x \times x) = x^2$$

If the sides are halved, new side = x / 2Now, new area = $\left(\frac{x}{2}\right)^2$ $=\frac{x^2}{4}$ It is clearly visible that the area has become one-fourth of its previous value. 10. A rectangular carpet has area 120 m² and perimeter 46 metres. The length of its diagonal is (a) 15 m (b) 16 m (c) 17 m (d) 20 m **Answer:** (c) 17 m Explanation: Area of the rectangle = 120 m^2 Perimeter = 46 m Let the sides of the rectangle be I and b. Therefore Area = $lb = 120 \text{ m}^2 \dots (1)$ Perimeter = 2(1 + b) = 46Or, $(1 + b) = 46 / 2 = 23 \text{ m} \dots (2)$ Now, length of the diagonal of the rectangle = $l^2 + b^2$ So, we first find the value of $(1^2 + b^2)$ Using identity: $(1^2 + b^2) = (1 + b)^2 - 2$ (1b) [From (1) and (2)] Therefore $(1^2 + b^2) = (23)^2 - 2(120)$ = 529 - 240 = 289Thus, length of the diagonal of the rectangle = $l^2 + b^2 = 289 = 17 \text{ m}$ 11. If the ratio between the length and the perimeter of a rectangular plot is 1:3, then the ratio between the length and breadth of the plot is (a) 1:2(b) 2:1(c) 3:2(d) 2:3 **Answer:** (b) 2 : 1 Explanation: It is given that Length of rectangle / Perimeter of rectangle = 1/3=> 1/(21+2b) = 1/3After cross multiplying, we get: 31 = 21 + 2b

$$=>1=2b$$

$$=> 1 / b= 2 / 1$$

Thus, the ratio of the length and the breadth is 2:1.

12. If the length of the diagonal of a square is 20 cm, then its perimeter is

(a)
$$10\sqrt{2}$$
 cm (b) 40 cm (c) $40\sqrt{2}$ cm (d) 200 cm

Answer: (c) $40\sqrt{2}$ cm

Explanation:

Length of diagonal = 20 cm

Length of side of a square = $\frac{\text{Length of diagonal}}{\sqrt{2}}$

$$=\frac{20}{\sqrt{2}}$$

$$=10\sqrt{2}$$

Therefore, perimeter of the square is $4 \times \text{Side} = 4 \times 10\sqrt{2} \text{ cm}$

$$=40\sqrt{2}$$
 cm