RD SHARMA
Solutions
Class 9 Maths
Chapter 6
Ex 6.1

Q1. Which of the following expressions are polynomials in one variable and which are not?

State the reasons for your answers

1.
$$3x^2 - 4x + 15$$

2.
$$y^2 + 2\sqrt{3}$$

$$3. \ 3\sqrt{x} + \sqrt{2}x$$

4.
$$x - \frac{4}{x}$$

4.
$$x - \frac{4}{x}$$

5. $x^{12} + y^2 + t^{50}$

Sol:

1.
$$3x^2-4x+15$$
 – it is a polynomial of x

2.
$$y^2 + 2\sqrt{3}$$
 – it is a polynomial of y

3.
$$3\sqrt{x} + \sqrt{2}x$$
 – it is not a polynomial since the exponent of $3\sqrt{x}$ is not a positive term

4.
$$x-\frac{4}{x}$$
 – it is not a polynomial since the exponent of $-\frac{4}{x}$ is not a positive term 5. $x^{12}+y^2+t^{50}$ – it is a three variable polynomial which variables of x, y, t

5.
$$x^{12} + y^2 + t^{50}$$
 – it is a three variable polynomial which variables of x, y, t

Q2. Write the coefficients of x^2 in each of the following

1.
$$17 - 2x + 7x^2$$

2.
$$9-12x + x^2$$

3.
$$\frac{\prod}{6} x^2 - 3x + 4$$

4.
$$\sqrt{3}x-7$$

Sol:

Given , to find the coefficients of x^2

1.
$$17-2x+7x^2$$
 – the coefficient is 7 2. $9-12x+x^2$ – the coefficient is 0

2.
$$9-12x + x^2$$
 – the coefficient is 0

3.
$$\frac{\prod}{6} x^2 - 3x + 4$$
 – the coefficient is $\frac{\prod}{6}$

4.
$$\sqrt{3}x-7$$
 – the coefficient is 0

Q3. Write the degrees of each of the following polynomials:

1.
$$7x^3 + 4x^2 - 3x + 12$$

2.
$$12-x+2x^2$$

3.
$$5y - \sqrt{2}$$

4. $7 - 7x^0$

4.
$$7 - 7x^0$$

Sol:

Given, to find degrees of the polynomials

Degree is highest power in the polynomial

1.
$$7x^3 + 4x^2 - 3x + 12$$
 – the degree is 3

2.
$$12-x+2x^3$$
 – the degree is 3

3.
$$5y - \sqrt{2}$$
 – the degree is 1

4.
$$7 - 7x^0$$
 – the degree is 0

- 5. 0 the degree of 0 is not defined
- Q4. Classify the following polynomials as linear, quadratic, cuboc and biquadratic polynomials:

1.
$$x + x^2 + 4$$

$$2.3x - 2$$

3.
$$2x + x^2$$

5.
$$t^2 + 1$$

$$f.7t^4 + 4t^2 + 3t - 2$$

Sol:

Given

- 1. $x + x^2 + 4$ it is a quadratic polynomial as its degree is 2
- 2. 3x 2 it is a linear polynomial as its degree is 1
- 3. $2x + x^2$ it is a quadratic polynomial as its degree is 2
- 4. 3y it is a linear polynomial as its degree is 1
- 5. $t^2 + 1$ it is a quadratic polynomial as its degree is 2
- f . $7t^4 + 4t^2 + 3t 2$ it is a bi- quadratic polynomial as its degree is 4
- Q5. Classify the following polynomials as polynomials in one variables, two variables etc:

1.
$$x^2 - xy + 7y^2$$

2.
$$x^2 - 2tx + 7t^2 - x + t$$

3.
$$t^3 - 3t^2 + 4t - 5$$

4.
$$xy + yz + zx$$

Sol:

Given

- 1. $x^2 xy + 7y^2$ it is a polynomial in two variables x and y
- 2. $x^2-2tx+7t^2-x+t$ it is a polynomial in two variables x and t
- 3. $t^3 3t^2 + 4t 5$ it is a polynomial in one variable t
- 4. xy+yz+zx it is a polynomial in 3 variables in x , y and z
- Q6. Identify the polynomials in the following:

1.
$$f(x) = 4x^3 - x^2 - 3x + 7$$

2.
$$b \cdot g(x) = 2x^3 - 3x^2 + \sqrt{x} - 1$$

3.
$$p(x) = \frac{2}{3}x^2 + \frac{7}{4}x + 9$$

4.
$$q(x) = 2x^2 - 3x + \frac{4}{x} + 2$$

5.
$$h(x) = x^4 - x^{\frac{3}{2}} + x - 1$$

6.
$$f(x) = 2 + \frac{3}{x} + 4x$$

Sol:

Given

1.
$$(f(x) = [latex]4x^{3} - x^{2} - 3x + 7)(4x^{3} - x^{2} - 3x + 7)]$$
 - it is a polynomial

- 2. b. [latex]g(x) = $2x^{3} 3x^{2} + \sqrt{x} 1$) it is not a polynomial since the exponent of \sqrt{x} is a negative integer
- 3. $\sqrt{p(x)} = [latex]\frac{2}{3}x^{2} + \frac{7}{4}x + 9)/(\frac{2}{3}x^{2} + \frac{7}{4}x + 9)]$ "> it is a polynomial as it has positive integers as exponents
- 4. $[latex]q(x) = 2x^{2} 3x + \frac{4}{x} + 2) it is not a polynomial since the exponent of <math>\frac{4}{x}$ is a negative integer
- 5. $h(x) = x^4 x^{\frac{3}{2}} + x 1$ it is not a polynomial since the exponent of $-x^{\frac{3}{2}}$ is a negative integer 6. $f(x) = 2 + \frac{3}{x} + 4x$ it is not a polynomial since the exponent of $\frac{3}{x}$ is a negative integer
- Q7. Identify constant, linear, quadratic abd cubic polynomial from the following polynomials:
 - 1. f(x) = 0
 - 2. $g(x) = 2x^3 7x + 4$
 - 3. $h(x) = -3x + \frac{1}{2}$
 - 4. $p(x) = 2x^2 x + 4$
 - 5. q(x) = 4x + 3
 - 6. $r(x) = 3x^3 + 4x^2 + 5x 7$

Sol:

Given,

- 1. f(x) = 0 as 0 is constant, it is a constant variable
- 2. $g(x) = 2x^3 7x + 4$ since the degree is 3 , it is a cubic polynomial
- 3. $h(x) = -3x + \frac{1}{2}$ since the degree is 1, it is a linear polynomial
- 4. $p(x) = 2x^2 x + 4$ since the degree is 2, it is a quadratic polynomial
- 5. q(x) = 4x + 3 since the degree is 1 , it is a linear polynomial
- 6. $r(x) = 3x^3 + 4x^2 + 5x 7$ since the degree is 3, it is a cubic polynomial
- Q8. Give one example each of a binomial of degree 25, and of a monomial of degree 100

Sol:

Given, to write the examples for binomial and monomial with the given degrees

Example of a binomial with degree $25 - 7x^{35} - 5$

Example of a monomial with degree $100 - 2t^{100}$